Copied to
clipboard

G = Dic5xC52order 500 = 22·53

Direct product of C52 and Dic5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic5xC52, C53:10C4, C52:8C20, C5:2(C5xC20), C10.(C5xC10), C2.(D5xC52), (C5xC10).7C10, C10.10(C5xD5), (C5xC10).11D5, (C52xC10).1C2, SmallGroup(500,37)

Series: Derived Chief Lower central Upper central

C1C5 — Dic5xC52
C1C5C10C5xC10C52xC10 — Dic5xC52
C5 — Dic5xC52
C1C5xC10

Generators and relations for Dic5xC52
 G = < a,b,c,d | a5=b5=c10=1, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 176 in 96 conjugacy classes, 40 normal (10 characteristic)
C1, C2, C4, C5, C5, C5, C10, C10, C10, Dic5, C20, C52, C52, C52, C5xC10, C5xC10, C5xC10, C5xDic5, C5xC20, C53, C52xC10, Dic5xC52
Quotients: C1, C2, C4, C5, D5, C10, Dic5, C20, C52, C5xD5, C5xC10, C5xDic5, C5xC20, D5xC52, Dic5xC52

Smallest permutation representation of Dic5xC52
On 100 points
Generators in S100
(1 37 15 43 21)(2 38 16 44 22)(3 39 17 45 23)(4 40 18 46 24)(5 31 19 47 25)(6 32 20 48 26)(7 33 11 49 27)(8 34 12 50 28)(9 35 13 41 29)(10 36 14 42 30)(51 83 65 97 79)(52 84 66 98 80)(53 85 67 99 71)(54 86 68 100 72)(55 87 69 91 73)(56 88 70 92 74)(57 89 61 93 75)(58 90 62 94 76)(59 81 63 95 77)(60 82 64 96 78)
(1 49 39 29 19)(2 50 40 30 20)(3 41 31 21 11)(4 42 32 22 12)(5 43 33 23 13)(6 44 34 24 14)(7 45 35 25 15)(8 46 36 26 16)(9 47 37 27 17)(10 48 38 28 18)(51 91 81 71 61)(52 92 82 72 62)(53 93 83 73 63)(54 94 84 74 64)(55 95 85 75 65)(56 96 86 76 66)(57 97 87 77 67)(58 98 88 78 68)(59 99 89 79 69)(60 100 90 80 70)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)
(1 56 6 51)(2 55 7 60)(3 54 8 59)(4 53 9 58)(5 52 10 57)(11 64 16 69)(12 63 17 68)(13 62 18 67)(14 61 19 66)(15 70 20 65)(21 74 26 79)(22 73 27 78)(23 72 28 77)(24 71 29 76)(25 80 30 75)(31 84 36 89)(32 83 37 88)(33 82 38 87)(34 81 39 86)(35 90 40 85)(41 94 46 99)(42 93 47 98)(43 92 48 97)(44 91 49 96)(45 100 50 95)

G:=sub<Sym(100)| (1,37,15,43,21)(2,38,16,44,22)(3,39,17,45,23)(4,40,18,46,24)(5,31,19,47,25)(6,32,20,48,26)(7,33,11,49,27)(8,34,12,50,28)(9,35,13,41,29)(10,36,14,42,30)(51,83,65,97,79)(52,84,66,98,80)(53,85,67,99,71)(54,86,68,100,72)(55,87,69,91,73)(56,88,70,92,74)(57,89,61,93,75)(58,90,62,94,76)(59,81,63,95,77)(60,82,64,96,78), (1,49,39,29,19)(2,50,40,30,20)(3,41,31,21,11)(4,42,32,22,12)(5,43,33,23,13)(6,44,34,24,14)(7,45,35,25,15)(8,46,36,26,16)(9,47,37,27,17)(10,48,38,28,18)(51,91,81,71,61)(52,92,82,72,62)(53,93,83,73,63)(54,94,84,74,64)(55,95,85,75,65)(56,96,86,76,66)(57,97,87,77,67)(58,98,88,78,68)(59,99,89,79,69)(60,100,90,80,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,74,26,79)(22,73,27,78)(23,72,28,77)(24,71,29,76)(25,80,30,75)(31,84,36,89)(32,83,37,88)(33,82,38,87)(34,81,39,86)(35,90,40,85)(41,94,46,99)(42,93,47,98)(43,92,48,97)(44,91,49,96)(45,100,50,95)>;

G:=Group( (1,37,15,43,21)(2,38,16,44,22)(3,39,17,45,23)(4,40,18,46,24)(5,31,19,47,25)(6,32,20,48,26)(7,33,11,49,27)(8,34,12,50,28)(9,35,13,41,29)(10,36,14,42,30)(51,83,65,97,79)(52,84,66,98,80)(53,85,67,99,71)(54,86,68,100,72)(55,87,69,91,73)(56,88,70,92,74)(57,89,61,93,75)(58,90,62,94,76)(59,81,63,95,77)(60,82,64,96,78), (1,49,39,29,19)(2,50,40,30,20)(3,41,31,21,11)(4,42,32,22,12)(5,43,33,23,13)(6,44,34,24,14)(7,45,35,25,15)(8,46,36,26,16)(9,47,37,27,17)(10,48,38,28,18)(51,91,81,71,61)(52,92,82,72,62)(53,93,83,73,63)(54,94,84,74,64)(55,95,85,75,65)(56,96,86,76,66)(57,97,87,77,67)(58,98,88,78,68)(59,99,89,79,69)(60,100,90,80,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,74,26,79)(22,73,27,78)(23,72,28,77)(24,71,29,76)(25,80,30,75)(31,84,36,89)(32,83,37,88)(33,82,38,87)(34,81,39,86)(35,90,40,85)(41,94,46,99)(42,93,47,98)(43,92,48,97)(44,91,49,96)(45,100,50,95) );

G=PermutationGroup([[(1,37,15,43,21),(2,38,16,44,22),(3,39,17,45,23),(4,40,18,46,24),(5,31,19,47,25),(6,32,20,48,26),(7,33,11,49,27),(8,34,12,50,28),(9,35,13,41,29),(10,36,14,42,30),(51,83,65,97,79),(52,84,66,98,80),(53,85,67,99,71),(54,86,68,100,72),(55,87,69,91,73),(56,88,70,92,74),(57,89,61,93,75),(58,90,62,94,76),(59,81,63,95,77),(60,82,64,96,78)], [(1,49,39,29,19),(2,50,40,30,20),(3,41,31,21,11),(4,42,32,22,12),(5,43,33,23,13),(6,44,34,24,14),(7,45,35,25,15),(8,46,36,26,16),(9,47,37,27,17),(10,48,38,28,18),(51,91,81,71,61),(52,92,82,72,62),(53,93,83,73,63),(54,94,84,74,64),(55,95,85,75,65),(56,96,86,76,66),(57,97,87,77,67),(58,98,88,78,68),(59,99,89,79,69),(60,100,90,80,70)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100)], [(1,56,6,51),(2,55,7,60),(3,54,8,59),(4,53,9,58),(5,52,10,57),(11,64,16,69),(12,63,17,68),(13,62,18,67),(14,61,19,66),(15,70,20,65),(21,74,26,79),(22,73,27,78),(23,72,28,77),(24,71,29,76),(25,80,30,75),(31,84,36,89),(32,83,37,88),(33,82,38,87),(34,81,39,86),(35,90,40,85),(41,94,46,99),(42,93,47,98),(43,92,48,97),(44,91,49,96),(45,100,50,95)]])

200 conjugacy classes

class 1  2 4A4B5A···5X5Y···5BV10A···10X10Y···10BV20A···20AV
order12445···55···510···1010···1020···20
size11551···12···21···12···25···5

200 irreducible representations

dim1111112222
type+++-
imageC1C2C4C5C10C20D5Dic5C5xD5C5xDic5
kernelDic5xC52C52xC10C53C5xDic5C5xC10C52C5xC10C52C10C5
# reps112242448224848

Matrix representation of Dic5xC52 in GL4(F41) generated by

18000
01800
00100
00010
,
37000
01600
00180
00018
,
40000
0100
00370
00010
,
9000
04000
0001
0010
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,10,0,0,0,0,10],[37,0,0,0,0,16,0,0,0,0,18,0,0,0,0,18],[40,0,0,0,0,1,0,0,0,0,37,0,0,0,0,10],[9,0,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;

Dic5xC52 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times C_5^2
% in TeX

G:=Group("Dic5xC5^2");
// GroupNames label

G:=SmallGroup(500,37);
// by ID

G=gap.SmallGroup(500,37);
# by ID

G:=PCGroup([5,-2,-5,-5,-2,-5,250,10004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^10=1,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<